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S-Methylation of polythiolactam: chemical transformation of
macrocyclic anion receptor into new macrocyclic ligand for

metal ions
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Abstract—The S-methylation of a macrocyclic tetrathiolactam afforded a new macrocyclic thioimidate that exhibited good affinity
toward metal ions. The molecular structures of the macrocyclic ligand and its metal complexes were determined by X-ray
crystallography.
� 2007 Elsevier Ltd. All rights reserved.
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Macrocyclic compounds often have molecular recogni-
tion abilities.1 Polylactams (i.e., macrocyclic amides)
have recently received considerable interest as hydrogen
bonding donors due to their ability to include anions
and organic molecules,2 whereas macrocyclic com-
pounds containing –N@, –O–, and –S– groups form
useful inclusion complexes with metal ions, and their
widespread applications in molecular recognition and
metal ion transport are expected.3

Bowman-James’s group and our group previously dem-
onstrated that the thionation of polylactams enhances
the hydrogen donor ability of the hydrogen in the
N–H group, and the obtained polythiolactams (i.e.,
macrocyclic thioamides) exhibited strong affinity toward
anions.4 We here report the further chemical transfor-
mation of polythiolactam, which is effective for inverting
the inclusion ability of the macrocyclic compound and
provides a new macrocyclic ligand for metal ions.

Secondary thioamides have often been used as versatile
intermediates for synthetic applications in medical and
organic chemistry,5 and it is known that the S-alkylation
of secondary thioamides yields thioimidates.6 This situ-
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ation prompted us to carry out the S-methylation of
polythiolactam 1 to yield a new macrocyclic thioimidate
2, as shown in Scheme 1. Compound 2 has six nitrogen
lone pair electrons facing the cavity and is expected to
exhibit strong affinity toward metal ions. Metal com-
plexes of macrocyclic ligands with Schiff base units have
extensively been studied,3,7 and lanthanide(III) com-
plexes with macrocyclic hexaaza Schiff base ligands are
known to act as a catalyst for RNA cleavage.8 However,
studies of macrocyclic ligands containing the thioimi-
date group remain rare.9 In this Letter, preparation
and molecular structures of metal complexes of 2
([2ÆM]Xn) are presented.

Compound 1 was prepared as previously reported.4a

The S-methylation of 1 with trimethyloxonium tetra-
fluoroborate (Me3OBF4) afforded 2 in moderate yield
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(60%),10 whereas a similar reaction with a related poly-
lactam 3 did not give the corresponding macrocyclic imi-
date. The treatment of 2 with metal salts readily
provided metal complexes, [2ÆM]Xn (M = K, Ca, Eu,
Er; X = Cl, I, and NO3).11

The chemical structures of 2 and [2ÆM]Xn were con-
firmed by spectroscopic methods and X-ray crystallo-
graphy (see below).10–12 Figure 1 shows the 1H NMR
spectra of 2 and [2ÆCa]Cl2 in CDCl3. The 1H and 13C
NMR peaks of 2 cannot be assigned definitively because
of the complex signal pattern, although the signals
became broader and simpler at 130 �C in DMSO-d6.
The stereoisomerism of 2 in solution is suggested to be
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Figure 1. 1H NMR spectra of (a) 2 and (b) [2ÆCa]Cl2 (400 MHz,
CDCl3, 298 K). Peaks marked with an asterisk * are due to solvent
impurities.
due to the E/Z isomerization of the thioimidate group.6d

In contrast, complexation with a Ca(II) ion is consid-
ered to fix the geometry of 2 and results in a simplified
1H NMR spectrum, as shown in Figure 1b. For [2ÆEu]-
(NO3)3 and [2ÆEr](NO3)3, the complexation of the para-
magnetic metals leads to significant changes in the 1H
NMR spectrum,13 and the photoluminescence spectrum
of [2ÆEu](NO3)3 exhibits a sharp emission peak at
616 nm in CH3CN due to the 5D0! 7F2 transition of
the Eu(III) ion.7,8 The emission intensity of [2ÆEu](NO3)3

is about four times stronger than that of a Eu(III) com-
plex of the macrocyclic hexaaza Schiff base ligand
([4ÆEu](NO3)3).7f,g

To examine the affinity of 2 toward metal ions, compet-
itive complexation experiments on 2 and the known
macrocyclic ligand, dibenzo-18-crown-6(DB18C6),14

were carried out by 1H NMR spectroscopy. The NMR
experiments using 1:1 mixtures of [2ÆCa]Cl2 with
DB18C6 and of [2ÆEu](NO3)3 with DB18C6 showed that
2 exhibited much higher affinity toward Ca(II) and
Eu(III) ions than DB18C6. In neither case was any free
2 detected. In contrast, the NMR spectrum of a 1:1
mixture of [2ÆK]I with DB18C6 showed free 2, indicat-
ing less affinity of 2 toward K+ ion than that of
DB18C6.

The ORTEP drawings of 2, [2ÆCa]Cl2, and [2ÆEu](NO3)3

are presented in Figure 2.12 In the X-ray quality single
crystals of 2, the asymmetric unit of 2 consists of two
halves of two independent and discrete molecules.
Figure 2a indicates that 2 adopts an approximately
C2v conformation, and the two pyridine rings are heavily
tilted in opposite directions from the center circle with
dihedral angles of 39.20� and 46.31�, presumably due
to electronic repulsion between the lone pair electrons
of the nitrogen atoms. In contrast, as shown in Figure
2b and c, the complexation of 2 with metal ions leads
to a well-fitted accommodation of a metal ion in the
cavity, which induces reductions in the dihedral angles
between the pyridine rings and the macrocyclic frame-
work of 32.25� and 24.16�, respectively. For [2ÆEu]-
(NO3)3, the two pyridine rings are twisted with a dihe-
dral angle of 48.33� upon coordination to a Eu(III)
ion. In both complexes, the metal atom is bound to all
six nitrogen atoms of 2 with Ca–N and Eu–N atom dis-
tances of 2.708–2.825 and 2.598–2.631 Å, respectively.
The Eu–N atom distances are consistent with those



Figure 2. X-ray crystal structures of (a) 2, (b) [2ÆCa]Cl2, and (c)
[2ÆEu](NO3)3 with thermal ellipsoids drawn at the 50% probability
level. One of the two crystallographically independent molecules of 2 is
shown. Hydrogen atoms, anions, and solvated molecules are omitted
for simplicity.
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reported for the Eu complexes of the macrocyclic
hexaaza Schiff base ligand (2.564–2.747 Å).15

In contrast to extensive studies of the metal complexes
with 4,3,7,8 to our knowledge, the isolation of 4 has
not been successful presumably due to the poor resis-
tance of the imine bonds of 4 toward hydrolysis.7d,8b

The resistance of 2 toward hydrolysis in basic and acidic
media was evaluated using 1H NMR spectroscopy in
CDCl3. The treatment of a CDCl3 solution of 2 with
aqueous NaOH gave essentially the same NMR spec-
trum after 1 week. The addition of aqueous trifluoroace-
tic acid led to the protonation of 2; however, the
spectrum remained unchanged for 1 week. The treat-
ment of the solution with Na2CO3 gave essentially the
same NMR spectrum as that of the original 2. There-
fore, 2 seems to be a stable ligand and can serve as a
good ionophore for various metal ions.

As described above, 1 is not only a good anion receptor
but also a useful starting material for the preparation of
a new macrocyclic thioimidate 2. Compound 2 is a sta-
ble macrocyclic ligand that forms complexes with metal
ions. This synthetic protocol is practical for the design
of various macrocyclic ligands and ionophores for metal
ions.
ORTEP drawings of [2ÆK]I and [2ÆEr](NO3)3. Crystallo-
graphic data for the structural analysis have been depos-
ited with the Cambridge Crystallographic Data Center;
Publication Numbers CCDC 656961 (2Æ2CH3CN),
656962 ([2ÆK]I), 656963 ([2ÆCa]Cl2ÆCH3CN), 656964
([2ÆEu](NO3)3Æ2H2O), and 656965 ([2ÆEr](NO3)3).
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16.045(5) Å, b = 91.9400(11)�, V = 1564.8(9) Å3, Z = 2,
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